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DIFFRACTION OF A PLANE HYDROACOUSTIC WAVE ON THE OPEN END OF A PLANE, 
SEMI-INFINITE WAVEGUIDE WITH THIN ELASTIC WALLS* 

L. A. LHVITSKII 

1. Formulation of the problem. TWO identical, thin semi-infinite parallel screens 

Acoustic steady state oscillations of a fluid with two parallel half-planesimmersed 
in it and forming an open semi-infinite waveguide, are studied. The diffraction 
on the open end of a waveguide with perfectly rigid (soft) walls was studied in 
detail in /l/. The present paper deals with a waveguide with semi-transparent walls. 
The quantity sought is the pressure, for which the Helmholtz equation is assumed 
to hold inside the region, certain conditions containing high order derivatives at 
the boundary, and so-called boundary-contact conditions at the edge of the half- 
planes. The expressions for the boundary and boundary-contact operators are not 
given in concrete form. An exact expression for the pressure is obtained for the 
case when the acoustic field is generated by a plane wave. 

are placed in a compressible fluid to form an open, plane waveguide. We shall limit our- 
selves to the case of incompressible walls, since the compressibility of the material would 
lead to the problem of factorizing a second order matrix, and such problems have, in general, 
no analytic solution. 

Let a plane hydroacoustic wave A exp[i(pz -If/k" - pa~)I(p = k COSC~) impinge from the fluid 
on the waveguide at the angle rp to the screens (see Fig.1). 

We seek to determine the field scattered from the walls of 
the waveguide. The factor exp(-iwt) determining the time 
dependence of the processes is neglected everywhere. We 
shall describe the acoustic processes in the system in terms 
of the pressure P(z, y). The pxoblem in question is that 
of constructing a solution of the homogeneous Helmholtz 
equation outside the walls of the waveguide (k=ut/c is 
the wave number, 0 is the angular frequency, cis the 
speed of sound in the fluid and 2a is the width of the 
waveguide), with the boundary conditions at the walls 

Fig.1 AP (x, y) + kPp (2, Y) = 0 (1.1) 

~t'(X,~a+o)=$P(X,_ta-0) (1.2) 

LP(z,y)=m,(-_)~P(z,ia)t In,(-~)IP(',fa+0)--P(f,~a-0)1=0 @>@I (1.3) 

Condition (1.2) describes the incompressibility of the walls and the continuity of the vert- 
ical displacements at the boundary between the fluid and the screen, and condition (1.3) fol- 
lows from the equation of dynamics for plates /2/. The operators m, and mz are polynomials 
of the argument @/&r2. The coefficients of these polynomials are functions of themechanical. 
parameters of the problem and can, generally speaking, depend on the wave number k. We 

assume, in accordance with the principle of limiting absorption, that Imk>O. A solution 
for Imk=O is obtained by passing to the limit Imk +O /2/. 

An important example of the condition of the form (1.3) is obtained by assuming thatthe 
walls of the waveguide are thin plates capable only of the flexural oscillations 

(&-X&)-& P(z, ~ta)+v[P(Z,fa+o)--P(s,~t---~l=O (1.4) 

x = &)d& x$= 12(1 - o*)p&%--1' v = v,k*, V@ = 12(1 - or) p&S-'I 

Here 1~ is thePoisson'srati0 , E is the Young's modulus, PO is the plate density and p 
denotes the fluid density. The quantities Z,ZJ, k and a are dimensionless, and the plate 
thickness h serves as the charateristic dimension. Another example of the boundary condition 
(1.3) is obtained by assuming that the walls of the waveguide are membranes. 

P(",f")-~[P(Z, fa+o)-P(z,$n--O)]=O, aa+ 
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where T denotes the tension in the membrane and pO its density. 
Since the conditions attheedges of the waveguide walls are not specified in the formula- 

tion (l-l)- (l-3), it follows that the solution of the problem is not unique. In order to 
obtain a unique solution, we must formulate the boundary-contact conditions determining the 
state at the wall edges (see Sect.4). 

2. Construction of the solution. From the boundary conditions (1.2), (1.3), it 
is clear that the pressure P(X,Y) experiences a jump at the wall of the waveguide, while its 
normal derivative remains continuous. Let us write P (X, Y) as the potential of a double lay- 
er and introduce the pressure jumps at the walls: fl(X) at the wall Y = +a and f*(X) at 
the wall y = --a. Using the Green's function of the plane problem for the Helmholtz equation 

G (r, r’) = niH&‘) (kr), r = 1 r - r ’ i 
where H&)(/W) is the Hankel function, we have the following expression for the diffracted 
field: 

PP (xv Y) = - -&lx [f~ (5’) $G (r, rl’) + fz (x’) -&G (r, r2’)] ds’ 
-_ 

Here rl' (z', a) and ra’ (z’, - a) are the radius vectors of the points on the upper and the lower 
wall. Applying the theorem on Fourier transformation of a convolution, we obtain 

where F,(h) and F, (A) are Fourier transforms of the jumps fl (4 and f*(X). Now the prin- 
ciple of limiting absorption holds for p,, (X3 Y) , equation (1.1) is satisfied, p (X, Y) has 
a discontinuity at the walls and the derivative P,' (X9 Y) is continuous at Y = f a. The scat- 
tered field is continuous near the edges of the waveguide walls. To ensure the continuity of 
P(x, y) it is sufficient to demand that 

F, (h) = 0 (n-lmE), Fz (h) = 0 (h-1-e), 0 < E < ‘/a h + * 00 

Let us separate the complete field P(X, Y) into two parts: P*(X, y) symmetric in y , and 
P,(X, y) antisymmetric in y 

P (5, y) = p. (X, Y) + PC (X7 Y); 2p, (X7 Y) = p (X, Y) t p (X, -Y) 

Below we shall study in detail the construction of a solution for the symmetric parts of the 
field. For the antisymmetric part we shall just quote the results, since the derivation is 
identical in both cases. We have 

ex!, F, (h) [exp (i v/k" - ha ( y - a 1) - 

-- 
exp(iI/k2-_ha(y+a()]dh, 2F, (h) T= F, (h) - Fz (h) 

Let us write the boundary condition (1.3) for the field P. (X7 Y) 
f% 

- A exp(ipX)ml (p2) v/kBsin(v/kaa) + & 5 F,(h)exp (9.~) I,(h)dh=O 

-_I 

I, (A) = i Crkz - hem, @*)[I - exp (Zai l/k” - A*)1 + 2m, (1’) 

Taking into account the fact that when x>O we have 

we obtain the following integral equation: 

+- 
5 exp(ils) [F,(h)l,(h) i- 

- - 
2Aiml(pa)sin(a~l~a-~z)I/k* -p’&]~~=O. z>O (2.1) 

Since the jump in the acoustic pressure is equal to zero outside the plates, the second integ- 
ral equation will have the form 

;c ,-- t\p(~hz) F,(h)&= 0 (2.<(J) (2.2) 

The roots of the dispersion equation 

I, (h) = 0 (2.3) 

yield the wave numbers of the characteristic oscillations of the waveguide, symmetric in Y. 
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We shall assume that the algebraic order ZS, of the polynomial ml(ky) is not less than the 

degree 2S, of the polynomial m, (x2) I and the equation (2.3) with Imk>O has no realroots 

on the basic sheet of the doubly-sheeted Riemann surface of the function dn. We select 

the basic sheet of the radical 1/W-_ in the following manner. We make a cut from the 

point k = k such, that it approaches asymptotically the line Im i/k" - As = 0 as II I+ x) . 

We shall discuss the nature of the cut in more detail later. The second cut is made from the 

point a=-k, and is symmetrical with respect to the first cut about the point h = 0. We 

shall assume that on the basic sheet IimIm~P-k*=+cc as A-+*X. 

The roots of the equation (2.3) split into two groups. The roots of the first group (a 

finite number of roots) approach, as the walls of the waveguide move away from each other 

(ka+ s) , the roots of the dispersion equation 

-- 
Z(h)=i~ks-_*m,(hz)+2m,(~‘)=0 (2.4) 

of the single elastic plate immersed in a fluid. The algebraic order of the function I (h) is 

equal to 2S, +l, therefore the equation (2.4) has 2(2S, -j-1) roots on the Riemann surface. 

We shall call the corresponding roots of (2.3) the plate roots. The roots of the second group 

(their denumerable set) approach, as the density of the wall material increases (no+=),the 
wave numbers cN =l/P -(nN/a)= of the normal waves of a waveguide with perfectly rigid walls. 

The dispersion equation of this waveguide has the form 

1 - exp(2aifP -ha) = 0 

We shall call such roots the waveguide roots. We note that if the equation (2.3) is rewritten 

in the form 
-- 

1 - esp(2ai1//;'- h')=Z'- 
m , \i.‘) 

y k-- i,' N11 \h") (2.5) 

then the right hand side of (2.5) will be of order of i/h(I+*S'-'i-J as 1 h I+ YJ. From this it 

follows that when N-+x, then the following asymptotics holds for the waveguide roots: 

cN _ i I/(nN/ a)2 - ka 

and the roots approach the line 

-- 

with increasing N 
Imi/P-kliP=O 

Let us now make a cut in the complex h-plane from the point h = k in such a manner, 

that it passes through the waveguide roots of the equation (2.3) without interfering with 

the plate roots. Equations (2.1) and (2.2) will hold when the following conditions are fulfil- 

led: 

F, (a) I, (a) + * 
r- 

m1(pL2)~h2 - pL?siu(a V lit - p*)=u+ (a), F, (a)=c(a) 
(2.6) 

where u+(K) denotes a function analytic above (below) the contour of integration. 

Eliminating F,(a) from (2.6), we arrive at an inhomogeneous Riemann boundary value prob- 

lem /3/ which consists of finding two functions u+(k). u-(k) from a linear relationship connect- 

ing these functions, which holds on the real axis. 

Following the method of solving a similar Riemann problem given in /2/, we obtain 

(2.7) 

I,$ (a) = z,+ (a) z,- (a), I,* (a) = 0 we+‘;-), I a I + = 

Here gs (a) is a polynomial of degree S,- 1 with arbitrary coefficients to be determined lat- 

er; I,* (a) is the result of factorizing the function l,(k) , and the function I,+ (a) (I,- (a)) is 

analytic in the upper (lower) half-plane. 
Similarly, for the antisymmetric part of the field we have 

F,,(a)=&+.(a)- (@:-;;,j:;:) ~6.=j&s(a~P=$)) 

l,, (a) = iv k” - h’m, @*)I1 + exp (2&k k* - a*)1 + 2% (V) 

where l,,*(h) is the result of factorizing the function 1, (a). 

3. Factorization of I,(I). We construct the factorization formula using the method 

given in /4/. According to Sect.2, function l,(h) has no zeros on the strip I InI a Ic T, 'F< 
1111 k . Clearly, a complex constant exists such that 

lit11 I, (ay(Qy:sl+q == 1, I 1811 a I < T, y = V h2 = -i VW-V 
,<<,A - R 

As we said before, I,(h) has a finite number of the plate roots lying outside the strip 

I h a I , T on the lower sheet of the Riemann surface, and an enumerable set of the waveguide 
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roots lying on the cut. Let us construct the functions 

F (h) = In II, (A)/ (Q@l+l)I 

For the difference 

F (h) - F (0) = In I, (A) - In 1, (0) - (8, + l/J In (1 - I” / P) (3.1) 

the Cauchy type integral is equal to 

F(1)4(0)=+ s Xdz 
r+r zci--h) 

1 I 

(3.2) 

The contour r1 + rz is obtained by "expanding" a closed loop enclosing the points z=o and 

l,(h)=l,(O)(l- ~)csl+"%xp [& [ fidz] 

r&r* 

Every multiplying factor in (3.3) can be factorized simply, 

therefore we have 

l,+ (h) = I,- (- h) = r/Z8 (0) (1 + h ! k)sl+‘/~ exp E, (1) 

Fig.2 

The function E+(h) is bounded when Ihl-tx , therefore-we have 

1,+ (V - hsl+'l2, 1 h 1 -+ cd, ) ImA>-- 

Integrating (3.5) by parts and replacing z by -z, we obtain 

Let us now deform the contour r1 into the curve I_ enclosing the cut, and take into 

account the residues of the function 1,' (z) / 1. (z) at the plate zeros ki of the function Z,(z) 

lying in the upper half-plane of the lower sheet. This yields 

(3.4) 

(3.5) 

I,+ (h) = Jfls (0) (1 + a / k)S’+‘l~ 

we now transform the factorization formula (3.6) so as to separate the contribution of the 

waveguide poles of the function -- E,'(k)/ 1,(z). Let us introduce a new variable W = l//?-22. 

Then z = l/k"- ID' where the branch of the square root is chosen so that Im dk* - w2) 0. 

The integral in (3.6) now becomes 

Figure 3 depicts the contour r- on the W-plane. The contour consists of two branches, 

p_' and r_". Following /4/, we compute the integral along the small radius half-circle around 

the point W = 0. Denoting the residue of the function B,(w) at w = 0 by S, , we find 

that the integral is equal to (S,/ 2 - s, - '/,)In(l + h/k). Performing the change W--W, 

we transform the integral along the branch I_" to an integral along the arc I-"', and as a 

result we have 

where the first term under the limit sign is a sum of residues of the function B, (111) in terms 

of the waveguide zeros L,, of the function 1, (1) , and the second term is the integral along 

the cut up to the root cV,. 
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Fig.3 

It can be shown that 

&(w)= --aln$K,,(w) (3.8) 

K,, (w) = 0 (~-a(*+~+, 1 w 1 + w 

In (3.8) the term (-a/n) corresponding to a perfectly rigid waveguide, appears explicitly. 
We note that in (3.7) the integral of the function 

along the cut, can be replaced by an integral along the segment, w=o to w==Mrc/a,of 
the real axis. Substituting the resulting limit, which has been computed in /4/, and the 
relations (3.8), (3.7) into (3.6), we finally obtain (c is the Euler constant) 

The integral in (3.9) is taken along the cut. The formula for L+(V is obtained in the sim- 
ilar manner, with K,,(w) replaced by 

1 
K,,(w)= -y 

cd(aw) [l/k” - w2m,ml + 73 (mime’ - ml’ma)] - a vka - w*qB 

VkY - w* [II_+ ~0s~ (mu) mf - w sin (Zaw) mlma -I- ml*] 

4. Boundary contact conditions. We note that S1 coefficients of the polynomial 
g,(h) are, so far, arbitrary constants. To determine these constants, we must have S, bound- 

ary contact conditions specifying the state at the edges of the waveguide walls. The general 

form of the boundary contact conditions is the following: 

N:P( +(),a)= lim JS x_+o, I,(-&.)-&wi (4.1) 

s~~(-~~)[P(s,a+0)-~((2,a-O)l]=O, i=l,2,...,& 

For a particular case of flexural oscillations (1.4) of a thin plate with a free edge we have 
s, : 2 , and the boundary contact conditions have the form 

In the physical sense, these conditions express the absence of concentrated forces and moments 
from the plate edges. The boundary contact conditions for the part of the field p, (I. Y) 

symmetrical in Y, and 

11,;P6 (r, 10 =: - _4S,; (}I) 1/A:! - b~'sin (a l/P - p”) + -& \ csp (+ iOh) F, <A) r; (i.) 10. = 0, j = 1, 2, . . , SI (4.21 
--. 

where 
+,‘ +a 

,-,I;.) = I.\,~'?.) (Tk”-_ [I -eexp (?aiV’li’)h”)l _I-~,LT,~(~). 
\ crp (+ N&)!(h) dl = lim c cxp (ihr) f (L) dh 

j. 
x++o c -u 
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Writing explicitly the expansion of the polynomial g,(k) in powers of L 

rs (h) = c, + C,?. + . + C,_,h*-1 

and substituting the expression for F,(5) from (2.7) into (4.1), we obtain the following 
system of S, equations with SI unknown C,(k): 

+- 
Inj (k) = s 1: (N 

exp(+iO1)mbnrj(b)dl. n=O,l....,S1-i (4.3) 

-m 

(4.4) 

The integrals in (4.3) and (4.4) are, in general, divergent. In order to regularize them /2/, 
we shall deform the contour of integration to a cut in the upper half-plane of X. This 
will involve intersecting the poles of the integrand expression situated at the plate roots 

l._(i) 

(4.5) 

The summation in (4.5) is carried out over the plate roots 5, of the equation (2.3), lying 

in the upper half-plane of J.. Taking into account the by-pass relations for the functions 

l.,-(i) obtained in /2/, we have 

The values of the functions l,"(X) on the basic sheet coincide with the values of $(J.) on the 
second sheet. 

Now we can replace the integral along P_ by an integral along the edge P_' 

I,,,(k) = 2ai c ““rj (5) I,* (A) L"~~-_isin*(a ‘r/-b') (4.6) 
I,'(X) I I,- (Ql," (A) 

~m,Slj- m,Saj]dJ. 
nl 

To make the integral in (4.6) convergent, we impose the following restriction on the fun- 

ction rj (A): 
Imp (A? SX~ (U - ml(113 S*j (Q] = 0 (a"'), 1 I I + 00 (4.7) 

i.e. the function appearing in the left hand part of (4.7) increases at infinity more slowly 

than ]l]@*. As was said in /2/, a restriction of the type (4.7) imposed on r](k) implies 

the necessity of existence of a relationship connecting the boundary contact operators RJ 

with the boundary operator L, as a direct consequence of the physical features of the phen- 

omenon. Similarly, for the integrals J, we obtain the expression 

Expressions for the boundary contact integrals for the part of the field P,(z, y) anti- 
symmetric with respect to g, are obtained in the same manner. 

The author thanks D. P. Kouzov and B. P. Belinskii for valuable comments. 
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